Skip To Main Content

Gifted In Math

Characteristics of the Gifted Math Student : an exerpt from Davidson Gifted

Whether math problems require computation skills, problem-solving strategies, inferential thinking skills, or deductive reasoning, mathematically talented students are often able to discern answers with unusual speed and accuracy. Mathematically gifted students are able to see relationships among topics, concepts, and ideas without the intervention of formal instruction specifically geared to that particular content (Heid, 1983). Due to their intuitive understanding of mathematical function and processes, they may skip over steps and be unable to explain how they arrived at the correct answer to a problem (Greenes, 1981).

For example, Mariah, an energetic, 6th-grade prealgebra student, often seems disinterested during her hourlong math class, as she doodles and appears to be preoccupied. While the teacher demonstrates the steps required for calculating the correct answer to 4b + 11= 2b + 23, Mariah leafs through her history folder. After all, she can solve these linear algebraic equations in just one step. Like many gifted students, she barely listens to the teacher’s directions, does not write page numbers in her assignment book, and does not make eye contact with the teacher. Mariah views practicing step-by-step processes as a waste of time when solutions can be found by just looking at the problem.

Students who are talented in mathematics often demonstrate an uneven pattern of mathematical understanding and development, since some are much stronger in concept development than they are in computation (Rotigel, 2000; Sheffield, 1994). Gifted math students often want to know more about the “hows” and “whys” of mathematical ideas than the computational “how-to” processes (Sheffield). Since these children often prefer to learn all they can about a particular mathematical idea before leaving it for new concepts, a more expansive approach to mathematics based upon student interest may avoid the frustration that occurs when the regular classroom schedule demands that it is time to move on to another topic. A more linear approach to mathematics is often a better match for gifted children instead of the spiral curricula often found in textbook series and followed by classroom teachers. For example, when the topic of decimals is introduced, children with mathematical talent can be allowed to delve much further into the topic, learning practical applications for decimals and the connections between decimals and other mathematical topics.

Many of these students’ gifted characteristics emerge during the preschool years. Bailey, a mathematically precocious 5-year-old, understands that numbers have patterns and relationships to real life. While watching a series of movie previews at the local theater, she can skillfully decide which new releases will occur before or after she turns 6 simply by noting their release dates in the upcoming year. Parents of preschoolers may report that their child demonstrates an unusual interest in mathematical concepts and particularly enjoys games involving numbers. At an early age, some gifted students note relationships between products and prices in the grocery store, the passage of time, changes in weather temperatures, and measurements of distances. Parents of these “number sense gurus” are fascinated by their children’s precociousness, but are often unaware of the significance or relevance of these early mathematical discoveries.

By the time these emergent mathematical geniuses arrive for their first formal math lessons in kindergarten, they may have already established their own unique theories of number sense, sequences and patterns, problem solving, and computational strategies. Too frequently, the teachers following the curriculum merely touch on many math concepts, failing to recognize and nurture young mathematicians (Pletan, Robinson, Berninger, & Abbott, 1995). Formal instruction in elementary school classrooms often lacks challenge for the gifted learner since courses in regular classrooms sometimes have a relatively narrow range of topics, minimal investigation of concepts, repeated drill and practice, and yearly repetition. The basic mathematical concepts that are presented in kindergarten and 1st grade can be a particular problem for children who have already mastered number recognition, one-to-one correspondence, and counting. Recent studies indicate that few instructional adaptations are made to accommodate these young learners’ needs (Archambault, Westberg, Brown, Hallmark, Emmons, & Zhang, 1993). Students gifted in mathematical thinking and problem solving need greater depth and breadth of topics and openended opportunities for solving more complex problems (Sheffield, 1994).

How can parents support learning in this area?

Mensa For Kids